ProjectSquareBall/Assets/Scripts/DrawShape.cs
2024-06-23 21:12:22 +05:30

174 lines
4.7 KiB
C#

using System.Collections.Generic;
using UnityEngine;
public class DrawShape : MonoBehaviour
{
// List of Vector3 points that define the shape
public List<Vector3> points;
public Material material;
public void Draw(List<Vector3> list, Vector3 offset)
{
Vector3 startPoint = list[0];
Vector3 endPoint = list[list.Count - 1];
List<Vector3> newPoints = new List<Vector3>();
newPoints.Add(startPoint+ offset);
newPoints.AddRange(list);
newPoints.Add(endPoint+ offset);
points = newPoints;
if (points == null || points.Count < 3)
{
Debug.LogError("You need at least 3 points to define a shape.");
return;
}
// Create a new GameObject to hold the mesh
GameObject shapeObject = new GameObject("Shape");
shapeObject.transform.parent = transform;
shapeObject.transform.localPosition = Vector3.zero;
// Add MeshFilter and MeshRenderer components
MeshFilter meshFilter = shapeObject.AddComponent<MeshFilter>();
MeshRenderer meshRenderer = shapeObject.AddComponent<MeshRenderer>();
// Create the mesh and assign it to the MeshFilter
Mesh mesh = new Mesh();
meshFilter.mesh = mesh;
// Set the vertices from the points list
mesh.vertices = points.ToArray();
// Triangulate the points
int[] triangles = Triangulate(points);
// Set the triangles
mesh.triangles = triangles;
// Recalculate normals and bounds
mesh.RecalculateNormals();
mesh.RecalculateBounds();
// Set a basic material
meshRenderer.material = material;
}
int[] Triangulate(List<Vector3> vertices)
{
// Simple ear clipping triangulation algorithm for concave/convex polygons
// Note: This is a very basic implementation and may not handle all cases.
List<int> indices = new List<int>();
int n = vertices.Count;
if (n < 3)
return indices.ToArray();
int[] V = new int[n];
if (Area(vertices) > 0)
{
for (int v = 0; v < n; v++)
V[v] = v;
}
else
{
for (int v = 0; v < n; v++)
V[v] = (n - 1) - v;
}
int nv = n;
int count = 2 * nv;
for (int m = 0, v = nv - 1; nv > 2;)
{
if ((count--) <= 0)
return indices.ToArray();
int u = v;
if (nv <= u)
u = 0;
v = u + 1;
if (nv <= v)
v = 0;
int w = v + 1;
if (nv <= w)
w = 0;
if (Snip(vertices, u, v, w, nv, V))
{
int a, b, c, s, t;
a = V[u];
b = V[v];
c = V[w];
indices.Add(a);
indices.Add(b);
indices.Add(c);
m++;
for (s = v, t = v + 1; t < nv; s++, t++)
V[s] = V[t];
nv--;
count = 2 * nv;
}
}
return indices.ToArray();
}
float Area(List<Vector3> vertices)
{
int n = vertices.Count;
float A = 0.0f;
for (int p = n - 1, q = 0; q < n; p = q++)
{
Vector3 v0 = vertices[p];
Vector3 v1 = vertices[q];
A += v0.x * v1.y - v1.x * v0.y;
}
return A * 0.5f;
}
bool Snip(List<Vector3> vertices, int u, int v, int w, int n, int[] V)
{
int p;
Vector3 A = vertices[V[u]];
Vector3 B = vertices[V[v]];
Vector3 C = vertices[V[w]];
if (Mathf.Epsilon > (((B.x - A.x) * (C.y - A.y)) - ((B.y - A.y) * (C.x - A.x))))
return false;
for (p = 0; p < n; p++)
{
if ((p == u) || (p == v) || (p == w))
continue;
Vector3 P = vertices[V[p]];
if (InsideTriangle(A, B, C, P))
return false;
}
return true;
}
bool InsideTriangle(Vector3 A, Vector3 B, Vector3 C, Vector3 P)
{
float ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
float cCROSSap, bCROSScp, aCROSSbp;
ax = C.x - B.x;
ay = C.y - B.y;
bx = A.x - C.x;
by = A.y - C.y;
cx = B.x - A.x;
cy = B.y - A.y;
apx = P.x - A.x;
apy = P.y - A.y;
bpx = P.x - B.x;
bpy = P.y - B.y;
cpx = P.x - C.x;
cpy = P.y - C.y;
aCROSSbp = ax * bpy - ay * bpx;
cCROSSap = cx * apy - cy * apx;
bCROSScp = bx * cpy - by * cpx;
return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f));
}
}