174 lines
4.7 KiB
C#
174 lines
4.7 KiB
C#
using System.Collections.Generic;
|
|
using UnityEngine;
|
|
|
|
public class DrawShape : MonoBehaviour
|
|
{
|
|
// List of Vector3 points that define the shape
|
|
public List<Vector3> points;
|
|
public Material material;
|
|
|
|
public void Draw(List<Vector3> list, Vector3 offset)
|
|
{
|
|
Vector3 startPoint = list[0];
|
|
Vector3 endPoint = list[list.Count - 1];
|
|
|
|
List<Vector3> newPoints = new List<Vector3>();
|
|
newPoints.Add(startPoint+ offset);
|
|
newPoints.AddRange(list);
|
|
newPoints.Add(endPoint+ offset);
|
|
|
|
points = newPoints;
|
|
if (points == null || points.Count < 3)
|
|
{
|
|
Debug.LogError("You need at least 3 points to define a shape.");
|
|
return;
|
|
}
|
|
|
|
// Create a new GameObject to hold the mesh
|
|
GameObject shapeObject = new GameObject("Shape");
|
|
shapeObject.transform.parent = transform;
|
|
shapeObject.transform.localPosition = Vector3.zero;
|
|
|
|
// Add MeshFilter and MeshRenderer components
|
|
MeshFilter meshFilter = shapeObject.AddComponent<MeshFilter>();
|
|
MeshRenderer meshRenderer = shapeObject.AddComponent<MeshRenderer>();
|
|
|
|
// Create the mesh and assign it to the MeshFilter
|
|
Mesh mesh = new Mesh();
|
|
meshFilter.mesh = mesh;
|
|
|
|
// Set the vertices from the points list
|
|
mesh.vertices = points.ToArray();
|
|
|
|
// Triangulate the points
|
|
int[] triangles = Triangulate(points);
|
|
|
|
// Set the triangles
|
|
mesh.triangles = triangles;
|
|
|
|
// Recalculate normals and bounds
|
|
mesh.RecalculateNormals();
|
|
mesh.RecalculateBounds();
|
|
|
|
// Set a basic material
|
|
meshRenderer.material = material;
|
|
}
|
|
|
|
int[] Triangulate(List<Vector3> vertices)
|
|
{
|
|
// Simple ear clipping triangulation algorithm for concave/convex polygons
|
|
// Note: This is a very basic implementation and may not handle all cases.
|
|
|
|
List<int> indices = new List<int>();
|
|
int n = vertices.Count;
|
|
|
|
if (n < 3)
|
|
return indices.ToArray();
|
|
|
|
int[] V = new int[n];
|
|
if (Area(vertices) > 0)
|
|
{
|
|
for (int v = 0; v < n; v++)
|
|
V[v] = v;
|
|
}
|
|
else
|
|
{
|
|
for (int v = 0; v < n; v++)
|
|
V[v] = (n - 1) - v;
|
|
}
|
|
|
|
int nv = n;
|
|
int count = 2 * nv;
|
|
for (int m = 0, v = nv - 1; nv > 2;)
|
|
{
|
|
if ((count--) <= 0)
|
|
return indices.ToArray();
|
|
|
|
int u = v;
|
|
if (nv <= u)
|
|
u = 0;
|
|
v = u + 1;
|
|
if (nv <= v)
|
|
v = 0;
|
|
int w = v + 1;
|
|
if (nv <= w)
|
|
w = 0;
|
|
|
|
if (Snip(vertices, u, v, w, nv, V))
|
|
{
|
|
int a, b, c, s, t;
|
|
a = V[u];
|
|
b = V[v];
|
|
c = V[w];
|
|
indices.Add(a);
|
|
indices.Add(b);
|
|
indices.Add(c);
|
|
m++;
|
|
for (s = v, t = v + 1; t < nv; s++, t++)
|
|
V[s] = V[t];
|
|
nv--;
|
|
count = 2 * nv;
|
|
}
|
|
}
|
|
|
|
return indices.ToArray();
|
|
}
|
|
|
|
float Area(List<Vector3> vertices)
|
|
{
|
|
int n = vertices.Count;
|
|
float A = 0.0f;
|
|
for (int p = n - 1, q = 0; q < n; p = q++)
|
|
{
|
|
Vector3 v0 = vertices[p];
|
|
Vector3 v1 = vertices[q];
|
|
A += v0.x * v1.y - v1.x * v0.y;
|
|
}
|
|
return A * 0.5f;
|
|
}
|
|
|
|
bool Snip(List<Vector3> vertices, int u, int v, int w, int n, int[] V)
|
|
{
|
|
int p;
|
|
Vector3 A = vertices[V[u]];
|
|
Vector3 B = vertices[V[v]];
|
|
Vector3 C = vertices[V[w]];
|
|
if (Mathf.Epsilon > (((B.x - A.x) * (C.y - A.y)) - ((B.y - A.y) * (C.x - A.x))))
|
|
return false;
|
|
for (p = 0; p < n; p++)
|
|
{
|
|
if ((p == u) || (p == v) || (p == w))
|
|
continue;
|
|
Vector3 P = vertices[V[p]];
|
|
if (InsideTriangle(A, B, C, P))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool InsideTriangle(Vector3 A, Vector3 B, Vector3 C, Vector3 P)
|
|
{
|
|
float ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
|
|
float cCROSSap, bCROSScp, aCROSSbp;
|
|
|
|
ax = C.x - B.x;
|
|
ay = C.y - B.y;
|
|
bx = A.x - C.x;
|
|
by = A.y - C.y;
|
|
cx = B.x - A.x;
|
|
cy = B.y - A.y;
|
|
apx = P.x - A.x;
|
|
apy = P.y - A.y;
|
|
bpx = P.x - B.x;
|
|
bpy = P.y - B.y;
|
|
cpx = P.x - C.x;
|
|
cpy = P.y - C.y;
|
|
|
|
aCROSSbp = ax * bpy - ay * bpx;
|
|
cCROSSap = cx * apy - cy * apx;
|
|
bCROSScp = bx * cpy - by * cpx;
|
|
|
|
return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f));
|
|
}
|
|
}
|