1017 lines
40 KiB
C#
1017 lines
40 KiB
C#
|
|
// =================================
|
|
// Namespaces.
|
|
// =================================
|
|
|
|
using UnityEngine;
|
|
//using System.Collections;
|
|
|
|
using System;
|
|
|
|
// =================================
|
|
// Define namespace.
|
|
// =================================
|
|
|
|
namespace MirzaBeig
|
|
{
|
|
|
|
namespace Scripting
|
|
{
|
|
|
|
namespace Effects
|
|
{
|
|
|
|
// =================================
|
|
// Classes.
|
|
// =================================
|
|
|
|
//[ExecuteInEditMode]
|
|
[System.Serializable]
|
|
|
|
public static class Noise2
|
|
{
|
|
// =================================
|
|
// Nested classes and structures.
|
|
// =================================
|
|
|
|
// ...
|
|
|
|
// =================================
|
|
// Variables.
|
|
// =================================
|
|
|
|
// ...
|
|
|
|
// These variables are for simplex noise ->
|
|
// based on Stefan Gustavson's C/C++ implementation.
|
|
|
|
// Simple skewing factors for the 3D case.
|
|
// Used for simplex noise.
|
|
|
|
static float F3 = 0.333333333f;
|
|
static float G3 = 0.166666667f;
|
|
|
|
// =================================
|
|
// Functions.
|
|
// =================================
|
|
|
|
// ...
|
|
|
|
// Return -1.0 -> 1.0.
|
|
|
|
static float smooth(float t)
|
|
{
|
|
return t * t * (3.0f - 2.0f * t);
|
|
}
|
|
static float fade(float t)
|
|
{
|
|
return t * t * t * (t * (t * 6.0f - 15.0f) + 10.0f);
|
|
}
|
|
|
|
static int floor(float x)
|
|
{
|
|
return x > 0 ? (int)x : (int)x - 1;
|
|
}
|
|
static float lerp(float from, float to, float t)
|
|
{
|
|
return from + (t * (to - from));
|
|
}
|
|
|
|
// Mathf is usually just System.Math with a float cast.
|
|
// Saving the extra function call and casting manually
|
|
// has a noticeable (good) impact on performance and FPS.
|
|
|
|
// Returns a pseudo-random value based on the input seed (x).
|
|
|
|
//static float hash(float x)
|
|
//{
|
|
// float sine = (float)(Math.Sin(x) * 43758.5453);
|
|
// float fractionalSine = sine - floor(sine);
|
|
|
|
// return fractionalSine;
|
|
//}
|
|
|
|
// ...
|
|
|
|
static byte[] perm =
|
|
{
|
|
151,160,137,91,90,15,
|
|
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
|
|
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
|
|
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
|
|
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
|
|
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
|
|
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
|
|
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
|
|
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
|
|
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
|
|
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
|
|
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
|
|
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
|
|
151,160,137,91,90,15,
|
|
|
|
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
|
|
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
|
|
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
|
|
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
|
|
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
|
|
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
|
|
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
|
|
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
|
|
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
|
|
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
|
|
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
|
|
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
|
|
};
|
|
|
|
// Instead of multiplying by gradient and
|
|
// getting dot product, get the final value directly.
|
|
|
|
static float grad(int hash, float x, float y, float z)
|
|
{
|
|
switch (hash & 0xF)
|
|
{
|
|
case 0x0: return x + y;
|
|
case 0x1: return -x + y;
|
|
case 0x2: return x - y;
|
|
case 0x3: return -x - y;
|
|
case 0x4: return x + x;
|
|
case 0x5: return -x + x;
|
|
case 0x6: return x - x;
|
|
case 0x7: return -x - x;
|
|
case 0x8: return y + x;
|
|
case 0x9: return -y + x;
|
|
case 0xA: return y - x;
|
|
case 0xB: return -y - x;
|
|
case 0xC: return y + z;
|
|
case 0xD: return -y + x;
|
|
case 0xE: return y - x;
|
|
case 0xF: return -y - z;
|
|
|
|
// Not executed.
|
|
|
|
default: return 0.0f;
|
|
}
|
|
}
|
|
|
|
// ...
|
|
|
|
public static float perlin(float x, float y, float z)
|
|
{
|
|
// Integer part (floor).
|
|
|
|
int ix0 = ((x) > 0) ? ((int)x) : ((int)x - 1);
|
|
int iy0 = ((y) > 0) ? ((int)y) : ((int)y - 1);
|
|
int iz0 = ((z) > 0) ? ((int)z) : ((int)z - 1);
|
|
|
|
// Fractional part (v - floor).
|
|
|
|
float fx0 = x - ix0;
|
|
float fy0 = y - iy0;
|
|
float fz0 = z - iz0;
|
|
|
|
// Fractional part minus one.
|
|
|
|
float fx1 = fx0 - 1.0f;
|
|
float fy1 = fy0 - 1.0f;
|
|
float fz1 = fz0 - 1.0f;
|
|
|
|
// Wrap to 0...255.
|
|
|
|
int ix1 = (ix0 + 1) & 255;
|
|
int iy1 = (iy0 + 1) & 255;
|
|
int iz1 = (iz0 + 1) & 255;
|
|
|
|
ix0 &= 255;
|
|
iy0 &= 255;
|
|
iz0 &= 255;
|
|
|
|
// Smooth / fade.
|
|
|
|
float r = fz0 * fz0 * fz0 * (fz0 * (fz0 * 6.0f - 15.0f) + 10.0f);
|
|
float t = fy0 * fy0 * fy0 * (fy0 * (fy0 * 6.0f - 15.0f) + 10.0f);
|
|
float s = fx0 * fx0 * fx0 * (fx0 * (fx0 * 6.0f - 15.0f) + 10.0f);
|
|
|
|
// Gradients.
|
|
|
|
int hash;
|
|
float gradient;
|
|
|
|
float nxy0, nxy1;
|
|
float nx0, nx1;
|
|
float n0, n1;
|
|
|
|
// --- 1
|
|
|
|
hash = perm[ix0 + perm[iy0 + perm[iz0]]];
|
|
|
|
switch (hash & 0xF)
|
|
{
|
|
case 0x0: gradient = fx0 + fy0; break;
|
|
case 0x1: gradient = -fx0 + fy0; break;
|
|
case 0x2: gradient = fx0 - fy0; break;
|
|
case 0x3: gradient = -fx0 - fy0; break;
|
|
case 0x4: gradient = fx0 + fx0; break;
|
|
case 0x5: gradient = -fx0 + fx0; break;
|
|
case 0x6: gradient = fx0 - fx0; break;
|
|
case 0x7: gradient = -fx0 - fx0; break;
|
|
case 0x8: gradient = fy0 + fx0; break;
|
|
case 0x9: gradient = -fy0 + fx0; break;
|
|
case 0xA: gradient = fy0 - fx0; break;
|
|
case 0xB: gradient = -fy0 - fx0; break;
|
|
case 0xC: gradient = fy0 + fz0; break;
|
|
case 0xD: gradient = -fy0 + fx0; break;
|
|
case 0xE: gradient = fy0 - fx0; break;
|
|
case 0xF: gradient = -fy0 - fz0; break;
|
|
|
|
default: gradient = 0.0f; break;
|
|
}
|
|
|
|
nxy0 = gradient;
|
|
|
|
// --- 2
|
|
|
|
hash = perm[ix0 + perm[iy0 + perm[iz1]]];
|
|
|
|
switch (hash & 0xF)
|
|
{
|
|
case 0x0: gradient = fx0 + fy0; break;
|
|
case 0x1: gradient = -fx0 + fy0; break;
|
|
case 0x2: gradient = fx0 - fy0; break;
|
|
case 0x3: gradient = -fx0 - fy0; break;
|
|
case 0x4: gradient = fx0 + fx0; break;
|
|
case 0x5: gradient = -fx0 + fx0; break;
|
|
case 0x6: gradient = fx0 - fx0; break;
|
|
case 0x7: gradient = -fx0 - fx0; break;
|
|
case 0x8: gradient = fy0 + fx0; break;
|
|
case 0x9: gradient = -fy0 + fx0; break;
|
|
case 0xA: gradient = fy0 - fx0; break;
|
|
case 0xB: gradient = -fy0 - fx0; break;
|
|
case 0xC: gradient = fy0 + fz1; break;
|
|
case 0xD: gradient = -fy0 + fx0; break;
|
|
case 0xE: gradient = fy0 - fx0; break;
|
|
case 0xF: gradient = -fy0 - fz1; break;
|
|
|
|
default: gradient = 0.0f; break;
|
|
}
|
|
|
|
nxy1 = gradient;
|
|
|
|
// ---
|
|
|
|
nx0 = nxy0 + (r * (nxy1 - nxy0));
|
|
|
|
// --- 3
|
|
|
|
hash = perm[ix0 + perm[iy1 + perm[iz0]]];
|
|
|
|
switch (hash & 0xF)
|
|
{
|
|
case 0x0: gradient = fx0 + fy1; break;
|
|
case 0x1: gradient = -fx0 + fy1; break;
|
|
case 0x2: gradient = fx0 - fy1; break;
|
|
case 0x3: gradient = -fx0 - fy1; break;
|
|
case 0x4: gradient = fx0 + fx0; break;
|
|
case 0x5: gradient = -fx0 + fx0; break;
|
|
case 0x6: gradient = fx0 - fx0; break;
|
|
case 0x7: gradient = -fx0 - fx0; break;
|
|
case 0x8: gradient = fy1 + fx0; break;
|
|
case 0x9: gradient = -fy1 + fx0; break;
|
|
case 0xA: gradient = fy1 - fx0; break;
|
|
case 0xB: gradient = -fy1 - fx0; break;
|
|
case 0xC: gradient = fy1 + fz0; break;
|
|
case 0xD: gradient = -fy1 + fx0; break;
|
|
case 0xE: gradient = fy1 - fx0; break;
|
|
case 0xF: gradient = -fy1 - fz0; break;
|
|
|
|
default: gradient = 0.0f; break;
|
|
}
|
|
|
|
nxy0 = gradient;
|
|
|
|
// --- 4
|
|
|
|
hash = perm[ix0 + perm[iy1 + perm[iz1]]];
|
|
|
|
switch (hash & 0xF)
|
|
{
|
|
case 0x0: gradient = fx0 + fy1; break;
|
|
case 0x1: gradient = -fx0 + fy1; break;
|
|
case 0x2: gradient = fx0 - fy1; break;
|
|
case 0x3: gradient = -fx0 - fy1; break;
|
|
case 0x4: gradient = fx0 + fx0; break;
|
|
case 0x5: gradient = -fx0 + fx0; break;
|
|
case 0x6: gradient = fx0 - fx0; break;
|
|
case 0x7: gradient = -fx0 - fx0; break;
|
|
case 0x8: gradient = fy1 + fx0; break;
|
|
case 0x9: gradient = -fy1 + fx0; break;
|
|
case 0xA: gradient = fy1 - fx0; break;
|
|
case 0xB: gradient = -fy1 - fx0; break;
|
|
case 0xC: gradient = fy1 + fz1; break;
|
|
case 0xD: gradient = -fy1 + fx0; break;
|
|
case 0xE: gradient = fy1 - fx0; break;
|
|
case 0xF: gradient = -fy1 - fz1; break;
|
|
|
|
default: gradient = 0.0f; break;
|
|
}
|
|
|
|
nxy1 = gradient;
|
|
|
|
// ---
|
|
|
|
nx1 = nxy0 + (r * (nxy1 - nxy0));
|
|
|
|
// ---
|
|
|
|
n0 = nx0 + (t * (nx1 - nx0));
|
|
|
|
// --- 5
|
|
|
|
hash = perm[ix1 + perm[iy0 + perm[iz0]]];
|
|
|
|
switch (hash & 0xF)
|
|
{
|
|
case 0x0: gradient = fx1 + fy0; break;
|
|
case 0x1: gradient = -fx1 + fy0; break;
|
|
case 0x2: gradient = fx1 - fy0; break;
|
|
case 0x3: gradient = -fx1 - fy0; break;
|
|
case 0x4: gradient = fx1 + fx1; break;
|
|
case 0x5: gradient = -fx1 + fx1; break;
|
|
case 0x6: gradient = fx1 - fx1; break;
|
|
case 0x7: gradient = -fx1 - fx1; break;
|
|
case 0x8: gradient = fy0 + fx1; break;
|
|
case 0x9: gradient = -fy0 + fx1; break;
|
|
case 0xA: gradient = fy0 - fx1; break;
|
|
case 0xB: gradient = -fy0 - fx1; break;
|
|
case 0xC: gradient = fy0 + fz0; break;
|
|
case 0xD: gradient = -fy0 + fx1; break;
|
|
case 0xE: gradient = fy0 - fx1; break;
|
|
case 0xF: gradient = -fy0 - fz0; break;
|
|
|
|
default: gradient = 0.0f; break;
|
|
}
|
|
|
|
nxy0 = gradient;
|
|
|
|
// --- 6
|
|
|
|
hash = perm[ix1 + perm[iy0 + perm[iz1]]];
|
|
|
|
switch (hash & 0xF)
|
|
{
|
|
case 0x0: gradient = fx1 + fy0; break;
|
|
case 0x1: gradient = -fx1 + fy0; break;
|
|
case 0x2: gradient = fx1 - fy0; break;
|
|
case 0x3: gradient = -fx1 - fy0; break;
|
|
case 0x4: gradient = fx1 + fx1; break;
|
|
case 0x5: gradient = -fx1 + fx1; break;
|
|
case 0x6: gradient = fx1 - fx1; break;
|
|
case 0x7: gradient = -fx1 - fx1; break;
|
|
case 0x8: gradient = fy0 + fx1; break;
|
|
case 0x9: gradient = -fy0 + fx1; break;
|
|
case 0xA: gradient = fy0 - fx1; break;
|
|
case 0xB: gradient = -fy0 - fx1; break;
|
|
case 0xC: gradient = fy0 + fz1; break;
|
|
case 0xD: gradient = -fy0 + fx1; break;
|
|
case 0xE: gradient = fy0 - fx1; break;
|
|
case 0xF: gradient = -fy0 - fz1; break;
|
|
|
|
default: gradient = 0.0f; break;
|
|
}
|
|
|
|
nxy1 = gradient;
|
|
|
|
// --- 7
|
|
|
|
nx0 = nxy0 + (r * (nxy1 - nxy0));
|
|
|
|
// ---
|
|
|
|
hash = perm[ix1 + perm[iy1 + perm[iz0]]];
|
|
|
|
switch (hash & 0xF)
|
|
{
|
|
case 0x0: gradient = fx1 + fy1; break;
|
|
case 0x1: gradient = -fx1 + fy1; break;
|
|
case 0x2: gradient = fx1 - fy1; break;
|
|
case 0x3: gradient = -fx1 - fy1; break;
|
|
case 0x4: gradient = fx1 + fx1; break;
|
|
case 0x5: gradient = -fx1 + fx1; break;
|
|
case 0x6: gradient = fx1 - fx1; break;
|
|
case 0x7: gradient = -fx1 - fx1; break;
|
|
case 0x8: gradient = fy1 + fx1; break;
|
|
case 0x9: gradient = -fy1 + fx1; break;
|
|
case 0xA: gradient = fy1 - fx1; break;
|
|
case 0xB: gradient = -fy1 - fx1; break;
|
|
case 0xC: gradient = fy1 + fz0; break;
|
|
case 0xD: gradient = -fy1 + fx1; break;
|
|
case 0xE: gradient = fy1 - fx1; break;
|
|
case 0xF: gradient = -fy1 - fz0; break;
|
|
|
|
default: gradient = 0.0f; break;
|
|
}
|
|
|
|
nxy0 = gradient;
|
|
|
|
// --- 8
|
|
|
|
hash = perm[ix1 + perm[iy1 + perm[iz1]]];
|
|
|
|
switch (hash & 0xF)
|
|
{
|
|
case 0x0: gradient = fx1 + fy1; break;
|
|
case 0x1: gradient = -fx1 + fy1; break;
|
|
case 0x2: gradient = fx1 - fy1; break;
|
|
case 0x3: gradient = -fx1 - fy1; break;
|
|
case 0x4: gradient = fx1 + fx1; break;
|
|
case 0x5: gradient = -fx1 + fx1; break;
|
|
case 0x6: gradient = fx1 - fx1; break;
|
|
case 0x7: gradient = -fx1 - fx1; break;
|
|
case 0x8: gradient = fy1 + fx1; break;
|
|
case 0x9: gradient = -fy1 + fx1; break;
|
|
case 0xA: gradient = fy1 - fx1; break;
|
|
case 0xB: gradient = -fy1 - fx1; break;
|
|
case 0xC: gradient = fy1 + fz1; break;
|
|
case 0xD: gradient = -fy1 + fx1; break;
|
|
case 0xE: gradient = fy1 - fx1; break;
|
|
case 0xF: gradient = -fy1 - fz1; break;
|
|
|
|
default: gradient = 0.0f; break;
|
|
}
|
|
|
|
nxy1 = gradient;
|
|
|
|
// ---
|
|
|
|
nx1 = nxy0 + (r * (nxy1 - nxy0));
|
|
|
|
// ---
|
|
|
|
n1 = nx0 + (t * (nx1 - nx0));
|
|
|
|
// ---
|
|
|
|
return 0.936f * (n0 + (s * (n1 - n0)));
|
|
}
|
|
|
|
// Based on Stefan Gustavson's C/C++ implementation.
|
|
|
|
public static float simplex(float x, float y, float z)
|
|
{
|
|
float n0, n1, n2, n3; // Noise contributions from the four corners
|
|
|
|
// Skew the input space to determine which simplex cell we're in.
|
|
float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D.
|
|
|
|
float xs = x + s;
|
|
float ys = y + s;
|
|
float zs = z + s;
|
|
|
|
int i = xs > 0 ? (int)xs : (int)xs - 1;
|
|
int j = ys > 0 ? (int)ys : (int)ys - 1;
|
|
int k = zs > 0 ? (int)zs : (int)zs - 1;
|
|
|
|
float t = (i + j + k) * G3;
|
|
|
|
float X0 = i - t; // Unskew the cell origin back to (x, y, z) space
|
|
float Y0 = j - t;
|
|
float Z0 = k - t;
|
|
|
|
float x0 = x - X0; // The x, y, z distances from the cell origin.
|
|
float y0 = y - Y0;
|
|
float z0 = z - Z0;
|
|
|
|
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
|
|
// Determine which simplex we are in.
|
|
|
|
int i1, j1, k1; // Offsets for second corner of simplex in (i, j, k) coords.
|
|
int i2, j2, k2; // Offsets for third corner of simplex in (i, j, k) coords.
|
|
|
|
/* This code would benefit from a backport from the GLSL version! */
|
|
|
|
if (x0 >= y0)
|
|
{
|
|
if (y0 >= z0) // X Y Z order
|
|
{
|
|
i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0;
|
|
}
|
|
else if (x0 >= z0) // X Z Y order
|
|
{
|
|
i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1;
|
|
}
|
|
else // Z X Y order
|
|
{
|
|
i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// x0 < y0.
|
|
|
|
if (y0 < z0) // Z Y X order.
|
|
{
|
|
i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1;
|
|
}
|
|
else if (x0 < z0) // Y Z X order.
|
|
{
|
|
i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1;
|
|
}
|
|
else // Y X Z order.
|
|
{
|
|
i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0;
|
|
}
|
|
}
|
|
|
|
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
|
|
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
|
|
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
|
|
// c = 1/6.
|
|
|
|
float x1 = x0 - i1 + G3; // Offsets for second corner in (x, y, z) coords.
|
|
float y1 = y0 - j1 + G3;
|
|
float z1 = z0 - k1 + G3;
|
|
|
|
float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x, y, z) coords.
|
|
float y2 = y0 - j2 + 2.0f * G3;
|
|
float z2 = z0 - k2 + 2.0f * G3;
|
|
|
|
float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x, y, z) coords.
|
|
float y3 = y0 - 1.0f + 3.0f * G3;
|
|
float z3 = z0 - 1.0f + 3.0f * G3;
|
|
|
|
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds.
|
|
|
|
int ii = i & 0xff;
|
|
int jj = j & 0xff;
|
|
int kk = k & 0xff;
|
|
|
|
// Calculate the contribution from the four corners.
|
|
|
|
float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0;
|
|
|
|
// Gradients.
|
|
|
|
//int h;
|
|
|
|
int hash;
|
|
float gradient;
|
|
|
|
if (t0 < 0.0f)
|
|
{
|
|
n0 = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
t0 *= t0;
|
|
|
|
// --- 1
|
|
|
|
hash = perm[ii + perm[jj + perm[kk]]];
|
|
|
|
switch (hash & 0xF)
|
|
{
|
|
case 0x0: gradient = x0 + y0; break;
|
|
case 0x1: gradient = -x0 + y0; break;
|
|
case 0x2: gradient = x0 - y0; break;
|
|
case 0x3: gradient = -x0 - y0; break;
|
|
case 0x4: gradient = x0 + x0; break;
|
|
case 0x5: gradient = -x0 + x0; break;
|
|
case 0x6: gradient = x0 - x0; break;
|
|
case 0x7: gradient = -x0 - x0; break;
|
|
case 0x8: gradient = y0 + x0; break;
|
|
case 0x9: gradient = -y0 + x0; break;
|
|
case 0xA: gradient = y0 - x0; break;
|
|
case 0xB: gradient = -y0 - x0; break;
|
|
case 0xC: gradient = y0 + z0; break;
|
|
case 0xD: gradient = -y0 + x0; break;
|
|
case 0xE: gradient = y0 - x0; break;
|
|
case 0xF: gradient = -y0 - z0; break;
|
|
|
|
default: gradient = 0.0f; break;
|
|
}
|
|
|
|
n0 = t0 * t0 * gradient;
|
|
}
|
|
|
|
float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1;
|
|
|
|
if (t1 < 0.0f)
|
|
{
|
|
n1 = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
t1 *= t1;
|
|
|
|
hash = perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]];
|
|
|
|
switch (hash & 0xF)
|
|
{
|
|
case 0x0: gradient = x1 + y1; break;
|
|
case 0x1: gradient = -x1 + y1; break;
|
|
case 0x2: gradient = x1 - y1; break;
|
|
case 0x3: gradient = -x1 - y1; break;
|
|
case 0x4: gradient = x1 + x1; break;
|
|
case 0x5: gradient = -x1 + x1; break;
|
|
case 0x6: gradient = x1 - x1; break;
|
|
case 0x7: gradient = -x1 - x1; break;
|
|
case 0x8: gradient = y1 + x1; break;
|
|
case 0x9: gradient = -y1 + x1; break;
|
|
case 0xA: gradient = y1 - x1; break;
|
|
case 0xB: gradient = -y1 - x1; break;
|
|
case 0xC: gradient = y1 + z1; break;
|
|
case 0xD: gradient = -y1 + x1; break;
|
|
case 0xE: gradient = y1 - x1; break;
|
|
case 0xF: gradient = -y1 - z1; break;
|
|
|
|
default: gradient = 0.0f; break;
|
|
}
|
|
|
|
n1 = t1 * t1 * gradient;
|
|
}
|
|
|
|
float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2;
|
|
|
|
if (t2 < 0.0f)
|
|
{
|
|
n2 = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
t2 *= t2;
|
|
|
|
hash = perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]];
|
|
|
|
switch (hash & 0xF)
|
|
{
|
|
case 0x0: gradient = x2 + y2; break;
|
|
case 0x1: gradient = -x2 + y2; break;
|
|
case 0x2: gradient = x2 - y2; break;
|
|
case 0x3: gradient = -x2 - y2; break;
|
|
case 0x4: gradient = x2 + x2; break;
|
|
case 0x5: gradient = -x2 + x2; break;
|
|
case 0x6: gradient = x2 - x2; break;
|
|
case 0x7: gradient = -x2 - x2; break;
|
|
case 0x8: gradient = y2 + x2; break;
|
|
case 0x9: gradient = -y2 + x2; break;
|
|
case 0xA: gradient = y2 - x2; break;
|
|
case 0xB: gradient = -y2 - x2; break;
|
|
case 0xC: gradient = y2 + z2; break;
|
|
case 0xD: gradient = -y2 + x2; break;
|
|
case 0xE: gradient = y2 - x2; break;
|
|
case 0xF: gradient = -y2 - z2; break;
|
|
|
|
default: gradient = 0.0f; break;
|
|
}
|
|
|
|
n2 = t2 * t2 * gradient;
|
|
}
|
|
|
|
float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3;
|
|
|
|
if (t3 < 0.0f)
|
|
{
|
|
n3 = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
t3 *= t3;
|
|
|
|
hash = perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]];
|
|
|
|
switch (hash & 0xF)
|
|
{
|
|
case 0x0: gradient = x3 + y3; break;
|
|
case 0x1: gradient = -x3 + y3; break;
|
|
case 0x2: gradient = x3 - y3; break;
|
|
case 0x3: gradient = -x3 - y3; break;
|
|
case 0x4: gradient = x3 + x3; break;
|
|
case 0x5: gradient = -x3 + x3; break;
|
|
case 0x6: gradient = x3 - x3; break;
|
|
case 0x7: gradient = -x3 - x3; break;
|
|
case 0x8: gradient = y3 + x3; break;
|
|
case 0x9: gradient = -y3 + x3; break;
|
|
case 0xA: gradient = y3 - x3; break;
|
|
case 0xB: gradient = -y3 - x3; break;
|
|
case 0xC: gradient = y3 + z3; break;
|
|
case 0xD: gradient = -y3 + x3; break;
|
|
case 0xE: gradient = y3 - x3; break;
|
|
case 0xF: gradient = -y3 - z3; break;
|
|
|
|
default: gradient = 0.0f; break;
|
|
}
|
|
|
|
n3 = t3 * t3 * gradient;
|
|
}
|
|
|
|
// Add contributions from each corner to get the final noise value.
|
|
// The result is scaled to stay just inside [-1, 1].
|
|
|
|
return 32.0f * (n0 + n1 + n2 + n3);
|
|
}
|
|
|
|
// ...
|
|
|
|
public static float octavePerlin(float x, float y, float z, float frequency, int octaves, float lacunarity, float persistence)
|
|
{
|
|
// 0 and 1 will do nothing.
|
|
|
|
if (octaves < 2)
|
|
{
|
|
return perlin(x * frequency, y * frequency, z * frequency);
|
|
}
|
|
else
|
|
{
|
|
float total = 0.0f;
|
|
float amplitude = 1.0f;
|
|
|
|
float max = 0.0f;
|
|
|
|
for (int i = 0; i < octaves; i++)
|
|
{
|
|
total += perlin(x * frequency, y * frequency, z * frequency) * amplitude;
|
|
|
|
max += amplitude;
|
|
|
|
frequency *= lacunarity;
|
|
amplitude *= persistence;
|
|
}
|
|
|
|
return total / max;
|
|
}
|
|
}
|
|
|
|
// ...
|
|
|
|
public static float octaveSimplex(float x, float y, float z, float frequency, int octaves, float lacunarity, float persistence)
|
|
{
|
|
// 0 and 1 will do nothing.
|
|
|
|
if (octaves < 2)
|
|
{
|
|
return simplex(x * frequency, y * frequency, z * frequency);
|
|
}
|
|
else
|
|
{
|
|
float total = 0.0f;
|
|
float amplitude = 1.0f;
|
|
|
|
float max = 0.0f;
|
|
|
|
for (int i = 0; i < octaves; i++)
|
|
{
|
|
total += simplex(x * frequency, y * frequency, z * frequency) * amplitude;
|
|
|
|
max += amplitude;
|
|
|
|
frequency *= lacunarity;
|
|
amplitude *= persistence;
|
|
}
|
|
|
|
return total / max;
|
|
}
|
|
}
|
|
|
|
// Based on Stefan Gustavson's C/C++ implementation.
|
|
// Easier to understand, but not optimized (function calls aren't rolled out).
|
|
|
|
public static float perlinUnoptimized(float x, float y, float z)
|
|
{
|
|
int ix0, iy0, iz0;
|
|
int ix1, iy1, iz1;
|
|
|
|
float fx0, fy0, fz0;
|
|
float fx1, fy1, fz1;
|
|
|
|
// Integer part (floor).
|
|
|
|
ix0 = floor(x);
|
|
iy0 = floor(y);
|
|
iz0 = floor(z);
|
|
|
|
// Fractional part (v - floor).
|
|
|
|
fx0 = x - ix0;
|
|
fy0 = y - iy0;
|
|
fz0 = z - iz0;
|
|
|
|
// Fractional part minus one.
|
|
|
|
fx1 = fx0 - 1.0f;
|
|
fy1 = fy0 - 1.0f;
|
|
fz1 = fz0 - 1.0f;
|
|
|
|
// Wrap to 0...255.
|
|
|
|
ix1 = (ix0 + 1) & 255;
|
|
iy1 = (iy0 + 1) & 255;
|
|
iz1 = (iz0 + 1) & 255;
|
|
|
|
ix0 &= 255;
|
|
iy0 &= 255;
|
|
iz0 &= 255;
|
|
|
|
// Smooth / fade.
|
|
|
|
float s, t, r;
|
|
|
|
r = fade(fz0);
|
|
t = fade(fy0);
|
|
s = fade(fx0);
|
|
|
|
// Gradients.
|
|
|
|
float nxy0, nxy1;
|
|
float nx0, nx1;
|
|
float n0, n1;
|
|
|
|
nxy0 = grad(perm[ix0 + perm[iy0 + perm[iz0]]], fx0, fy0, fz0);
|
|
nxy1 = grad(perm[ix0 + perm[iy0 + perm[iz1]]], fx0, fy0, fz1);
|
|
nx0 = lerp(nxy0, nxy1, r);
|
|
|
|
nxy0 = grad(perm[ix0 + perm[iy1 + perm[iz0]]], fx0, fy1, fz0);
|
|
nxy1 = grad(perm[ix0 + perm[iy1 + perm[iz1]]], fx0, fy1, fz1);
|
|
nx1 = lerp(nxy0, nxy1, r);
|
|
|
|
n0 = lerp(nx0, nx1, t);
|
|
|
|
nxy0 = grad(perm[ix1 + perm[iy0 + perm[iz0]]], fx1, fy0, fz0);
|
|
nxy1 = grad(perm[ix1 + perm[iy0 + perm[iz1]]], fx1, fy0, fz1);
|
|
nx0 = lerp(nxy0, nxy1, r);
|
|
|
|
nxy0 = grad(perm[ix1 + perm[iy1 + perm[iz0]]], fx1, fy1, fz0);
|
|
nxy1 = grad(perm[ix1 + perm[iy1 + perm[iz1]]], fx1, fy1, fz1);
|
|
nx1 = lerp(nxy0, nxy1, r);
|
|
|
|
n1 = lerp(nx0, nx1, t);
|
|
|
|
return 0.936f * (lerp(n0, n1, s));
|
|
}
|
|
|
|
// ...
|
|
|
|
public static float simplexUnoptimized(float x, float y, float z)
|
|
{
|
|
float n0, n1, n2, n3; // Noise contributions from the four corners
|
|
|
|
// Skew the input space to determine which simplex cell we're in.
|
|
float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D.
|
|
|
|
float xs = x + s;
|
|
float ys = y + s;
|
|
float zs = z + s;
|
|
|
|
int i = floor(xs);
|
|
int j = floor(ys);
|
|
int k = floor(zs);
|
|
|
|
float t = (i + j + k) * G3;
|
|
|
|
float X0 = i - t; // Unskew the cell origin back to (x, y, z) space
|
|
float Y0 = j - t;
|
|
float Z0 = k - t;
|
|
|
|
float x0 = x - X0; // The x, y, z distances from the cell origin.
|
|
float y0 = y - Y0;
|
|
float z0 = z - Z0;
|
|
|
|
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
|
|
// Determine which simplex we are in.
|
|
|
|
int i1, j1, k1; // Offsets for second corner of simplex in (i, j, k) coords.
|
|
int i2, j2, k2; // Offsets for third corner of simplex in (i, j, k) coords.
|
|
|
|
/* This code would benefit from a backport from the GLSL version! */
|
|
|
|
if (x0 >= y0)
|
|
{
|
|
if (y0 >= z0) // X Y Z order
|
|
{
|
|
i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0;
|
|
}
|
|
else if (x0 >= z0) // X Z Y order
|
|
{
|
|
i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1;
|
|
}
|
|
else // Z X Y order
|
|
{
|
|
i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// x0 < y0.
|
|
|
|
if (y0 < z0) // Z Y X order.
|
|
{
|
|
i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1;
|
|
}
|
|
else if (x0 < z0) // Y Z X order.
|
|
{
|
|
i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1;
|
|
}
|
|
else // Y X Z order.
|
|
{
|
|
i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0;
|
|
}
|
|
}
|
|
|
|
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
|
|
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
|
|
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
|
|
// c = 1/6.
|
|
|
|
float x1 = x0 - i1 + G3; // Offsets for second corner in (x, y, z) coords.
|
|
float y1 = y0 - j1 + G3;
|
|
float z1 = z0 - k1 + G3;
|
|
|
|
float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x, y, z) coords.
|
|
float y2 = y0 - j2 + 2.0f * G3;
|
|
float z2 = z0 - k2 + 2.0f * G3;
|
|
|
|
float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x, y, z) coords.
|
|
float y3 = y0 - 1.0f + 3.0f * G3;
|
|
float z3 = z0 - 1.0f + 3.0f * G3;
|
|
|
|
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds.
|
|
|
|
int ii = i & 0xff;
|
|
int jj = j & 0xff;
|
|
int kk = k & 0xff;
|
|
|
|
// Calculate the contribution from the four corners.
|
|
|
|
float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0;
|
|
|
|
if (t0 < 0.0f)
|
|
{
|
|
n0 = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
t0 *= t0;
|
|
n0 = t0 * t0 * grad(perm[ii + perm[jj + perm[kk]]], x0, y0, z0);
|
|
}
|
|
|
|
float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1;
|
|
|
|
if (t1 < 0.0f)
|
|
{
|
|
n1 = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
t1 *= t1;
|
|
n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], x1, y1, z1);
|
|
}
|
|
|
|
float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2;
|
|
|
|
if (t2 < 0.0f)
|
|
{
|
|
n2 = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
t2 *= t2;
|
|
n2 = t2 * t2 * grad(perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], x2, y2, z2);
|
|
}
|
|
|
|
float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3;
|
|
|
|
if (t3 < 0.0f)
|
|
{
|
|
n3 = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
t3 *= t3;
|
|
n3 = t3 * t3 * grad(perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], x3, y3, z3);
|
|
}
|
|
|
|
// Add contributions from each corner to get the final noise value.
|
|
// The result is scaled to stay just inside [-1, 1].
|
|
|
|
return 32.0f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary!
|
|
}
|
|
|
|
// =================================
|
|
// End functions.
|
|
// =================================
|
|
|
|
}
|
|
|
|
// =================================
|
|
// End namespace.
|
|
// =================================
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// =================================
|
|
// --END-- //
|
|
// =================================
|